What Should Be In A Parallel
Hashing Standard?

John Kelsey, NIST, 2014 SHA3 Workshop

Two Standards

Tree hashing (NOT this discussion)

* Binary Merkle trees for crypo applications

* Arbitrary depth of tree

 Hash based signatures, timestamping, redactable signatures, etc.
Fast parallel hashing (this discussion)

e Focused on performance

o SIMD, multicore, multiple processors, etc.

e One- or two-level trees

Parallel Hashing Goals

(It's all about performance)

We want to...
* Benefit from parallelism (SIMD and multicore)....

e ... but don't impose too many costs on weaker
machines checking hash!

* Allow enough options to get performance benefit...

e .. .but not too many to test!

Our ldeas So Far

e Limited tree depth (1-2 max)

 More levels of tree = more hash states for sequential
implementations

e Support segmentation for long messages
e Support interleaving
e Support combination of segmentation and interleaving(”?)

Note: There are many other options I'm not even covering.

Segmented Hashing

A BCD

EF GH

I J K L

MNOP

ORST

UV WX

Y Z 0 1

y ada

<>

hO
hl
h2
h3
h4
h5

h6

hn

h[final]

. Break message into large

segments (16 KB +)

. Hash each segment and

store result.

. Repeat until whole

message hashed.

. Finally, hash resulting

nashes to get the final
nash value.

Segmented Hashing (2)

A BCD > ho
tach segment hasheo — .
iIndependently
I JKIL > 112
ash computation not nroF > b3
bound to architecture QRS T > h4
of any one machine UV WX »| b5
. Y Z 0 1 »| h6
Tree with only one level
ada - hn
Fasy to compute -

sequentially h[fi*nal]

Questions about Segmenting

* Which segment sizes should be ABCD =N
supported?
pp EF GH > h
Depends partly on IJKL > h2
. MNOP | h3
 Message size
QRST »| h4
* Time spent in leaves vs root I ol hs
« Hash details (padding, message Y Z 0 1 > 7
block length)
, y ada - hn
* How many segment sizes should
be supported? h[fi+nal]

e Should we have more levels of tree?

1.

Feed every Nth word into
different hash context.
Use SIMD to compute all
N hashes in parallel.
Repeat until whole
message hashed.

INnterleaved Hashing

(It's all about SIMD)

Original Message: ABCDEFGHIJKLMNOP

A EIM

BFJN

CGKO

DHLP

Finally, hash resulting

1asS
1asS

nes to get the final

N value.

hO
hl
h2

h3

|

h[final]

Interleaving (2)

e Hash parameters bound to
particular machine's
architecture

o Size of SIMD registers
determines how many
parallel "lanes” computed

 Natural word size of
algorithm determines size of
'slices’

e Seqguential machines take
some performance hit, as do
some other SIMD machines

AEIM‘QUYZ-"

| h0

BFJN‘RVZ3"'

| hl

CGEKO|SWO 4,]|"-

5| h2

DHLP|T X 15|

| h3

|

h[final]

Segmenting Plus Interleaving

(Many cores, each SIMD)

ABCDEFGHTIJKLMNOP

First Big Segment

ORSTUVWIXYZO012345

Second Big Segment

(more segments)

E

I

h0O0
h01l
h02
h03
hO
—
> | nh1
hl0
hll hn
hl2 l
hl3 h[final]

Questions about Interleaving

What choices for # of lanes
should we allow?

e 48,116,327 More? Less?
What should we standardize?
* |nterleaving only?
* Segmenting+Interleaving only?
* Both?

e Neither?

AEIM‘QUYZ-"

| h0

BFJN‘RVZ3"'

| hl

CGKO

S WO 4|

5| h2

DHLP

T X 1 5|

| h3

|

h[final]

Full hash function or

compression function?

SHAKEs have sakura padding (thus support for parallel
and tree modes) built in.

Other hashes don't...and we want a generic standard
It we use full hash function....

Good news: existing libraries and hardware can be used
to do parallel hashing mode.

Bad news: collisions between sequential and parallel
modes, and between parallel modes with different
parameters!

Collisions between parallel and
seguential hashes

Input to Segmented Parallel Hash: A BCDEFGH I JKULMNOTP

If we use unaltered
A BCD -+ | hO .
hash function...
EF GH +» | hl
IJKL > D2 * For any message you
M N O P > |3 parallel hash...
J e ...you can find a
hifinal different message
that gives the same
hash value from the
h0 hl h2 h3 » h[final]

seqguential hash.

Colliding message for sequential hash: hO hl h2 h3

Our Questions

Architectures

e Should we standardize all three of these or a subset?

o Should we be looking at other architectures? (Deeper trees?)
Parameters

* Interleaving: # of parallel lanes

¢ Segmenting: size of segment

 How many options do we need?

 More options = more bugs, harder testing

What are we missing? Where are we about to go wrong?

